log in  |  register  |  feedback?  |  help  |  web accessibility
Logo
Nonlocality with quantum inputs: fair-sampling assumption, post-selection, and the detection-loophole.
Charles Lim - Oak Ridge
Monday, December 14, 2015, 11:00 am-12:00 pm Calendar
  • You are subscribed to this talk through .
  • You are watching this talk through .
  • You are subscribed to this talk. (unsubscribe, watch)
  • You are watching this talk. (unwatch, subscribe)
  • You are not subscribed to this talk. (watch, subscribe)
Abstract

 

In this seminar, we look at how one can use certain properties of quantum physics to bypass the fair-sampling assumption commonly used in most practical Bell experiments. Our approach is based on an alternative nonlocality framework called “semi-quantum nonlocality”, where measurement instructions are represented by quantum inputs instead of classical inputs. A key feature of this framework is that all “entangled states are nonlocal”, in the sense that for any entangled state there is always a semi-quantum Bell inequality with which violation can be achieved. Building on this framework, we present a semi-quantum version of the CHSH inequality whose post-selected local bound is independent of the detection loss. We will then use this inequality as an example to illustrate how quantum inputs may be used to relax the fair-sampling assumption and hence close the detection-loophole. 

This talk is organized by Javiera Caceres