log in  |  register  |  feedback?  |  help  |  web accessibility
Logo
Patterned Complexity in Atomic Scattering
Brandon Ruzic - JQI
Friday, November 4, 2016, 12:15-1:15 pm Calendar
  • You are subscribed to this talk through .
  • You are watching this talk through .
  • You are subscribed to this talk. (unsubscribe, watch)
  • You are watching this talk. (unwatch, subscribe)
  • You are not subscribed to this talk. (watch, subscribe)
Abstract

Free lunch served at 12:00

As the constituents of cold gaseous matter continue to grow in complexity, the necessity to understand their basic collision processes remains. Exotic atomic species like erbium and dysprosium have been cooled to ultracold temperatures, revealing a dense forest of chaotically distributed resonances, a much more complicated landscape than the broad, isolated resonances seen in alkali-atom systems. Nevertheless, broad resonances emerge from the chaos. These resonances correspond to special halo-like eigenstates, which seem to occur in a predictable pattern. In this talk, I will describe a simple and powerful quantum defect theory for atomic scattering, how this theory can simply describe chaotic collisions, and how this theory may illuminate the character of the halo-like eigenstates.

This talk is organized by Javiera Caceres