log in  |  register  |  feedback?  |  help  |  web accessibility
Logo
Google's quantum experiment: a mathematical perspective
Gail Letzter - NSA and UMD, College Park
Virtual Via Zoom: https://umd.zoom.us/j/93192622019
Thursday, November 4, 2021, 2:00-3:00 pm Calendar
  • You are subscribed to this talk through .
  • You are watching this talk through .
  • You are subscribed to this talk. (unsubscribe, watch)
  • You are watching this talk. (unwatch, subscribe)
  • You are not subscribed to this talk. (watch, subscribe)
Abstract

In 2019, Google announced that they had achieved quantum supremacy: they performed a task on their newly constructed quantum device that could not be accomplished using classical computers in a reasonable amount of time.  In this talk, we present the mathematics and statistics involved in the set-up and analysis of the experiment, sampling from random quantum circuits.  We start with the theory of random matrices and explain how to produce a sequence of (pseudo) random unitary matrices using quantum circuits.  We then discuss how the Google team compares quantum and classical approaches using cross entropy and the Porter-Thomas distribution.  Along the way, we present other problems with potential quantum advantage and some of the latest results related to noisy near-term quantum computers. 

This talk is organized by Andrea F. Svejda