log in  |  register  |  feedback?  |  help  |  web accessibility
Logo
Dissipation induced dipole blockade and anti-blockade in driven Rydberg systems
Jeremy Young - JQI
Friday, October 20, 2017, 4:15-5:15 pm Calendar
  • You are subscribed to this talk through .
  • You are watching this talk through .
  • You are subscribed to this talk. (unsubscribe, watch)
  • You are watching this talk. (unwatch, subscribe)
  • You are not subscribed to this talk. (watch, subscribe)
Abstract

*Snacks and drinks at 4 pm*

We study the competing blockade and anti-blockade effects induced by spontaneously generated contaminant Rydberg atoms in driven Rydberg systems. These contaminant atoms provide a source of strong dipole-dipole interactions and play a crucial role in the system's behavior. We study this problem theoretically using two different approaches. The first is a cumulant expansion approximation, in which we ignore third-order and higher connected correlations. Using this approach for the case of resonant drive, a many-body blockade radius picture arises, and we find qualitative agreement with experiment. The second theoretical approach is a set of phenomenological inhomogeneous rate equations. We compare the results of our rate equation model to the experimental observations in [E. A. Goldschmidt, et al., PRL 116, 113001 (2016)] and find that these rate equations provide quantitatively good scaling behavior of the steady-state Rydberg population for both resonant and off-resonant drive.

This talk is organized by Javiera Caceres