log in  |  register  |  feedback?  |  help  |  web accessibility
Playing Games with Multiple Access Channels
Felix Leditzky - JILA/Waterloo
Wednesday, November 20, 2019, 11:00 am-12:15 pm Calendar
  • You are subscribed to this talk through .
  • You are watching this talk through .
  • You are subscribed to this talk. (unsubscribe, watch)
  • You are watching this talk. (unwatch, subscribe)
  • You are not subscribed to this talk. (watch, subscribe)

Communication networks have multiple users, each sending and receiving messages. A multiple access channel (MAC) models multiple senders transmitting to a single receiver, such as the uplink from many mobile phones to a single base station. The optimal performance of a MAC is quantified by a capacity region of simultaneously achievable communication rates. We study the two-sender classical MAC, the simplest and best-understood network, and find a surprising richness in both a classical and quantum context. First, we find that quantum entanglement shared between senders can substantially boost the capacity of a classical MAC. Second, we find that optimal performance of a MAC with bounded-size inputs may require unbounded amounts of entanglement. Third, determining whether a perfect communication rate is achievable using finite-dimensional entanglement is undecidable. Finally, we show that evaluating the capacity region of a two-sender classical MAC is in fact NP-hard.

Joint work with M. Alhejji, J. Levin, G. Smith; arXiv:1909.02479

This talk is organized by Andrea F. Svejda