log in  |  register  |  feedback?  |  help  |  web accessibility
Optical Enhancement of Superconductivity via Targeted Destruction of Charge Density Waves
Hossein Dehghani - University of Maryland
Friday, November 15, 2019, 12:00-12:40 pm Calendar
  • You are subscribed to this talk through .
  • You are watching this talk through .
  • You are subscribed to this talk. (unsubscribe, watch)
  • You are watching this talk. (unwatch, subscribe)
  • You are not subscribed to this talk. (watch, subscribe)

It has been experimentally established that the occurrence of charge density waves is a common feature of various under-doped cuprate superconducting compounds. The observed states, which are often found in the form of bond density waves (BDW), often occur in a temperature regime immediately above the superconducting transition temperature. Motivated by recent optical experiments on superconducting materials, where it has been shown that optical irradiation can transiently improve the superconducting features, here, we propose a new approach for the enhancement of superconductivity by the targeted destruction of the BDW order. Since BDW states are usually found in competition with superconductivity, suppression of the BDW order enhances the tendency of electrons to form Cooper pairs after reaching a steady-state. By investigating the optical coupling of gapless, collective fluctuations of the BDW modes, we argue that the resonant excitation of these modes can melt the underlying BDW order parameter. We propose an experimental setup to implement such an optical coupling using 2D plasmon-polariton hybrid systems.

(pizza and drinks served 10 min. before talk)

This talk is organized by Andrea F. Svejda