log in  |  register  |  feedback?  |  help  |  web accessibility
PhD Proposal: Learning The Physics World with Differentiable Simulation
Yiling Qiao
Monday, November 14, 2022, 3:00-5:00 pm Calendar
  • You are subscribed to this talk through .
  • You are watching this talk through .
  • You are subscribed to this talk. (unsubscribe, watch)
  • You are watching this talk. (unwatch, subscribe)
  • You are not subscribed to this talk. (watch, subscribe)
Differentiable physics is a powerful and novel approach to learning and control problems that involve physical objects and environments. We have developed differentiable scalable, powerful, and efficient differentiable simulators. These include the state-of-the-art differentiable physics for rigid body, cloth, fluids, articulated body, deformable solid, hybrid traffic system, NeRF-based representation, and even quantum dynamics, which as a whole built a closed-loop differentiable pipeline to learn the physics world. A diagram in my research statement visualizes the structure of such a differentiable system. Our physics priors can serve as a strong prior of our world and greatly improve the data efficiency when training AI algorithms. It can be integrated with applications like embodied AI (articulated body), AI for fashion and design (cloth), animation (soft body), ML for science (fluids, soft materials, quantum), autonomous driving (traffic), and quantum computing.
Examining Committee


Dr. Ming Lin

Department Representative:

Dr. Tom Goldstein


Dr. Dinesh Manocha


Dr. Jia-Bin Huang






Yi-Ling Qiao is a fourth-year Ph.D. student in computer science advised by Prof. Ming C. Lin at University of Maryland, College Park. Before that, he obtained double degrees in math and computer science from the University of Chinese Academy of Sciences. His research interests lie in physically-based simulation, graphics, and machine learning.

This talk is organized by Tom Hurst