log in  |  register  |  feedback?  |  help  |  web accessibility
Logo
Entanglement-enabled symmetry-breaking orders
Jacob Lin - University of Maryland
Friday, April 28, 2023, 12:00-1:00 pm Calendar
  • You are subscribed to this talk through .
  • You are watching this talk through .
  • You are subscribed to this talk. (unsubscribe, watch)
  • You are watching this talk. (unwatch, subscribe)
  • You are not subscribed to this talk. (watch, subscribe)
Abstract

A spontaneous symmetry-breaking order is conventionally described by a tensor-product wave-function of some few-body clusters. We discuss a type of symmetry-breaking orders, dubbed entanglement-enabled symmetry-breaking orders, which cannot be realized by any tensor-product state. Given a symmetry breaking pattern, we propose a criterion to diagnose if the symmetry-breaking order is entanglement-enabled, by examining the compatibility between the symmetries and the tensor-product description. For concreteness, we present an infinite family of exactly solvable gapped models on one-dimensional lattices with nearest-neighbor interactions, whose ground states exhibit entanglement-enabled symmetry-breaking orders from a discrete symmetry breaking. In addition, these ground states have gapless edge modes protected by the unbroken symmetries. We also propose a construction to realize entanglement-enabled symmetry-breaking orders with spontaneously broken continuous symmetries. Under the unbroken symmetries, some of our examples can be viewed as symmetry-protected topological states that are beyond the conventional classifications.

(Pizza and refreshments will be served after the talk.)

This talk is organized by Andrea F. Svejda