log in  |  register  |  feedback?  |  help  |  web accessibility
Logo
Analysis of SoS Relaxations for the Quantum Rotor Model
Sujit Kajana Rao - MIT
Wednesday, August 23, 2023, 11:00 am-12:00 pm Calendar
  • You are subscribed to this talk through .
  • You are watching this talk through .
  • You are subscribed to this talk. (unsubscribe, watch)
  • You are watching this talk. (unwatch, subscribe)
  • You are not subscribed to this talk. (watch, subscribe)
Abstract

The noncommutative sum-of-squares (ncSoS) hierarchy was introduced by Navascues--Pironio--Acin as a sequence of semidefinite programming relaxations for approximating values of "noncommutative polynomial optimization problems," which were originally intended to generalize quantum values of nonlocal games. Recent work has started to analyze the hierarchy for approximating ground energies of local Hamiltonians, initially through rounding algorithms which output product states for degree-2 ncSoS. Some rounding methods are known which output entangled states, but they use degree-4 ncSoS. Based on this, Hwang--Neeman--Parekh--Thompson--Wright conjectured that degree-2 ncSoS cannot beat product state approximations for quantum max-cut and gave a partial proof relying on a conjectural generalization of Borrell's inequality. In this talk we will describe the ncSoS hierarchy and a family of Hamiltonians (called the quantum rotor model in condensed matter literature or lattice O(n) vector model in QFT) over an infinite-dimensional local Hilbert space, and sketch a proof that a degree-2 ncSoS relaxation approximates the ground energy better than any product state.

Join Zoom Meeting

https://umd.zoom.us/j/9893676372?pwd=VVNOd2xNZ3FCblk4aFdTMjkzTllvQT09

Meeting ID: 989 367 6372

Passcode: abc123

---

One tap mobile

+19294362866,,9893676372# US (New York)

+12532050468,,9893676372# US

---

Dial by your location

• +1 929 436 2866 US (New York)

• +1 253 205 0468 US

• +1 253 215 8782 US (Tacoma)

• +1 301 715 8592 US (Washington DC)

• +1 305 224 1968 US

• +1 309 205 3325 US

• +1 312 626 6799 US (Chicago)

• +1 346 248 7799 US (Houston)

• +1 360 209 5623 US

• +1 386 347 5053 US

• +1 507 473 4847 US

• +1 564 217 2000 US

• +1 646 931 3860 US

• +1 669 444 9171 US

• +1 669 900 6833 US (San Jose)

• +1 689 278 1000 US

• +1 719 359 4580 US

Meeting ID: 989 367 6372

Find your local number: https://umd.zoom.us/u/abF3cNNZ0B

---

Join by SIP

• 9893676372@zoomcrc.com

---

Join by H.323

• 162.255.37.11 (US West)

• 162.255.36.11 (US East)

• 115.114.131.7 (India Mumbai)

• 115.114.115.7 (India Hyderabad)

• 213.19.144.110 (Amsterdam Netherlands)

• 213.244.140.110 (Germany)

• 103.122.166.55 (Australia Sydney)

• 103.122.167.55 (Australia Melbourne)

• 149.137.40.110 (Singapore)

• 64.211.144.160 (Brazil)

• 149.137.68.253 (Mexico)

• 69.174.57.160 (Canada Toronto)

• 65.39.152.160 (Canada Vancouver)

• 207.226.132.110 (Japan Tokyo)

• 149.137.24.110 (Japan Osaka)

Meeting ID: 989 367 6372

Passcode: 578842

*We strongly encourage attendees to use their full name (and if possible, their UMD credentials) to join the zoom session.*

This talk is organized by Andrea F. Svejda