log in  |  register  |  feedback?  |  help  |  web accessibility
Quantum-inspired Benchmark for Estimating Intrinsic Dimension
Aritra Das - University of Maryland
Friday, October 24, 2025, 12:00-1:00 pm
  • You are subscribed to this talk through .
  • You are watching this talk through .
  • You are subscribed to this talk. (unsubscribe, watch)
  • You are watching this talk. (unwatch, subscribe)
  • You are not subscribed to this talk. (watch, subscribe)
Abstract

Machine learning models can generalize well on real-world datasets. According to the manifold hypothesis, this is possible because datasets lie on a latent manifold with small intrinsic dimension (ID). There exist many methods for ID estimation (IDE), but their estimates vary substantially. This warrants benchmarking IDE methods on manifolds that are more complex than those in existing benchmarks. We propose a Quantum-Inspired Intrinsic-dimension Estimation (QuIIEst) benchmark consisting of infinite families of topologically non-trivial manifolds with known ID. Our benchmark stems from a quantum-optical method of embedding arbitrary homogeneous spaces while allowing for curvature modification and additive noise. The IDE methods tested were generally less accurate on QuIIEst manifolds than on existing benchmarks under identical resource allocation. We also observe minimal performance degradation with increasingly non-uniform curvature, underscoring the benchmark's inherent difficulty. As a result of independent interest, we perform IDE on the fractal Hofstadter's butterfly and identify which methods are capable of extracting the effective dimension of a space that is not a manifold.

Pizza and drinks will be served after the seminar in ATL 2117.

This talk is organized by Andrea F. Svejda