As quantum information technology matures and becomes more complex, so do the needs for interconnecting disparate quantum subsystems (computers, networks, sensors) into larger quantum networks. Thus, developing reliable quantum interconnects (QuICs) – from chip- to continental-scale, is emerging as one of the central goals for quantum information science and technology. I will describe our activities aimed at realization of two important QuICS: quantum repeaters (QR) and quantum transducers (QT). Our QRs rely on silicon-vacancy (SiV) color center in diamond, a leading quantum memory platform, essential for realization of long-distance quantum networks [1]. In addition to their excellent spin and optical properties, SiVs feature large strain susceptibility [2] which has resulted in emergence of the field of quantum phononics. Here, phonons could be used to control SiVs [3-5] as well as to realize chip-scale QuICs. I will also discuss our work on thin film lithium niobate (TFLN) photonic platform [6] that can be used to control spectral and temporal [7, 8] properties of photons emitted by SiVs. Finally, QTs based on TFLN [9] will also be presented. These devices can enable realization of networks of quantum computers, connected with low loss and low noise optical communication channels.
*We strongly encourage attendees to use their full name (and if possible, their UMD credentials) to join the zoom session.*

